Last week we witnessed what many are calling one of the biggest cyber attacks in recent times. SUNBURST, the malware installed on SolarWinds’ Orion product line in what seems like a nation-state sponsored supply chain attack, has made its way to the headlines worldwide, and for good reason.
Throughout this brief post, we will present some of the key Tactics and Techniques used by the nation-state actors in the malicious campaign, using the MITRE ATT&CK framework as a baseline, and will provide recommendations on how organizations can minimize the risk of exposure to complex attacks and the damage inflicted by them.
SUNBURST, when installed, can allow an attacker to compromise the server in which the Orion products run. Namely, the nation-state attacker, crafted a very sophisticated backdoor which was disguised as a legitimate software update from SolarWinds’ Orion products, as was disclosed by FireEye on December 13th. Unbeknownst to them, dozens of thousands of public, private and government organizations, including tech giants and government agencies such as the US Treasury and Homeland Security departments, have installed the malware in their systems in the past few months, and the malware could have been in stealth since as early as March of this year.
For Security Operations teams, this type of malware is nothing less than a nightmare. Firstly, there is the urgency of understanding whether the malware is present in any part of the organizations’ network. Should that be the case – which is the reality of at least 18,000 companies so far – the incident response team and threat hunters need to thoroughly understand whether the backdoor has actually been used to extract information, and what traces (if any) has it left in the network. Allegedly, post compromise activity following this supply chain compromise has included C2 Communication, Lateral Movement, Defense Evasion and Data Theft.
The Initial Access for the malware is conducted by a Supply Chain Compromise, via a malicious DLL file that the actor successfully installs in a SolarWinds update package.
When the package is executed, the DLL is executed and the machine gets infected. The main capabilities of the malware include: Awareness activity and Execution capabilities, as well as Scripting capabilities like PowerShell.
The malware enumerates the host for the existence of specific drivers, services and processes. These are mostly security controls used by organizations, or tools used by security researchers. If any entries in the list are found, the malware will terminate and will halt any further execution. Additionally, the malware attempts to disable specific security controls detected on the host by modifying registry key settings.
After a dormant period of up to two weeks, the malware communicates to a Command and Control server, using a SolarWinds legitimate Application Layer Protocol, which also serves for Defense Evasion. Other Defense Evasion techniques used by the actor are impersonating legitimate entities from the network, as well as evading known endpoint security components.
The actor later uses various techniques, such as creating new tasks on remote machines using PowerShell, for lateral movement to points of interest.
The attack ends in Exfiltration of relevant data, such as emails via PowerShell email commands, or password-protected archives containing sensitive data from the victim’s servers, via standard HTTP requests.
It is recommended to perform a comprehensive IOC sweep (using the IOCs previously published by FireEye as a follow up to the initial write-up) across all hosts in the network, as well as examine for any abnormal Federation trusts in your Azure tenants or any signs of administrative actions from unmonitored endpoints (e.g., IP addresses from which no EDR agent has reported).
The SolarWinds breach is not over: identifying all the potential points of exposure and completely blocking them can be quite cumbersome, especially in big IT environments. In order to keep track of your organization’s exposure to the SolarWinds breach, we recommend several security posture enhancements that will increase the likelihood of detecting the SUNBURST backdoor and its subsequent activities, as well as other complex threats in the future: